CUDA by Example : An Introduction to General-Purpose GPU Programming by Jason Sanders and Edward Kandrot (2010, Trade Paperback)

Brenham Book Company (393)
93.6% positive feedback
Price:
$40.14
+ $4.25 shipping
Estimated delivery Tue, May 6 - Mon, May 12
Returns:
30 days returns. Buyer pays for return shipping. If you use an eBay shipping label, it will be deducted from your refund amount.
Condition:
Brand New
CUDA by Example: An Introduction to General-Purpose GPU Programming

About this product

Product Identifiers

PublisherAddison Wesley Professional
ISBN-100131387685
ISBN-139780131387683
eBay Product ID (ePID)102830512

Product Key Features

Number of Pages320 Pages
Publication NameCUDA by Example : an Introduction to General-Purpose GPU Programming
LanguageEnglish
SubjectProgramming Languages / General, Computer Graphics, Programming / General, Programming / Parallel
Publication Year2010
FeaturesRevised
TypeTextbook
AuthorJason Sanders, Edward Kandrot
Subject AreaComputers
FormatTrade Paperback

Dimensions

Item Height0.6 in
Item Weight16.8 Oz
Item Length9 in
Item Width7.3 in

Additional Product Features

Intended AudienceScholarly & Professional
LCCN2010-017618
Dewey Edition22
IllustratedYes
Dewey Decimal005.2/75
Edition DescriptionRevised edition
Table Of ContentForeword xiii Preface xv Acknowledgments xvii About the Authors xix Chapter 1: Why CUDA? Why Now? 1 1.1 Chapter Objectives 2 1.2 The Age of Parallel Processing 2 1.3 The Rise of GPU Computing 4 1.4 CUDA 6 1.5 Applications of CUDA 8 1.6 Chapter Review 11 Chapter 2: Getting Started 13 2.1 Chapter Objectives 14 2.2 Development Environment 14 2.3 Chapter Review 19 Chapter 3: Introduction to CUDA C 21 3.1 Chapter Objectives 22 3.2 A First Program 22 3.3 Querying Devices 27 3.4 Using Device Properties 33 3.5 Chapter Review 35 Chapter 4: Parallel Programming in CUDA C 37 4.1 Chapter Objectives 38 4.2 CUDA Parallel Programming 38 4.3 Chapter Review 57 Chapter 5: Thread Cooperation 59 5.1 Chapter Objectives 60 5.2 Splitting Parallel Blocks 60 5.3 Shared Memory and Synchronization 75 5.4 Chapter Review 94 Chapter 6: Constant Memory and Events 95 6.1 Chapter Objectives 96 6.2 Constant Memory 96 6.3 Measuring Performance with Events 108 6.4 Chapter Review 114 Chapter 7: Texture Memory 115 7.1 Chapter Objectives 116 7.2 Texture Memory Overview 116 7.3 Simulating Heat Transfer 117 7.4 Chapter Review 137 Chapter 8: Graphics Interoperability 139 8.1 Chapter Objectives 140 8.2 Graphics Interoperation 140 8.3 GPU Ripple with Graphics Interoperability 147 8.4 Heat Transfer with Graphics Interop 154 8.5 DirectX Interoperability 160 8.6 Chapter Review 161 Chapter 9: Atomics 163 9.1 Chapter Objectives 164 9.2 Compute Capability 164 9.3 Atomic Operations Overview 168 9.4 Computing Histograms 170 9.5 Chapter Review 183 Chapter 10: Streams 185 10.1 Chapter Objectives 186 10.2 Page-Locked Host Memory 186 10.3 CUDA Streams 192 10.4 Using a Single CUDA Stream 192 10.5 Using Multiple CUDA Streams 198 10.6 GPU Work Scheduling 205 10.7 Using Multiple CUDA Streams Effectively 208 10.8 Chapter Review 211 Chapter 11: CUDA C on Multiple GPUs 213 11.1 Chapter Objectives 214 11.2 Zero-Copy Host Memory 214 11.3 Using Multiple GPUs 224 11.4 Portable Pinned Memory 230 11.5 Chapter Review 235 Chapter 12: The Final Countdown 237 12.1 Chapter Objectives 238 12.2 CUDA Tools 238 12.3 Written Resources 244 12.4 Code Resources 246 12.5 Chapter Review 248 Appendix A: Advanced Atomics 249 A.1 Dot Product Revisited 250 A.2 Implementing a Hash Table 258 A.3 Appendix Review 277 Index 279
Synopsis"This book is required reading for anyone working with accelerator-based computing systems." -From the Foreword by Jack Dongarra, University of Tennessee and Oak Ridge National Laboratory CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required-just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You'll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you'll need are freely available for download from NVIDIA. http: //developer.nvidia.com/object/cuda-by-example.html, "This book is required reading for anyone working with accelerator-based computing systems." -From the Foreword by Jack Dongarra, University of Tennessee and Oak Ridge National Laboratory CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required-just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You'll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you'll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html, CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required-just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You'll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources
LC Classification NumberQA76.76.A65S255 2010

All listings for this product

Buy It Now
Any Condition
New
Pre-owned

Ratings and Reviews

5.0
3 product ratings
  • 3 users rated this 5 out of 5 stars
  • 0 users rated this 4 out of 5 stars
  • 0 users rated this 3 out of 5 stars
  • 0 users rated this 2 out of 5 stars
  • 0 users rated this 1 out of 5 stars

Would recommend

Good value

Compelling content

Most relevant reviews

  • Really Good Tech Read

    Really nice intro & history about Nvidia's CUDA. I bought this as a computer GPU enthusiast and light programmer. A pleasant read honestly.

    Verified purchase: YesCondition: Pre-owned

  • Great book for students

    Book has great details that are very helpful

    Verified purchase: YesCondition: Pre-owned

  • super

    ok

    Verified purchase: YesCondition: Pre-owned